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Objective of Talk

I Develop a methodology which combine timing analysis to
perform the hammering in a controlled manner and to
create bit flips in cryptographic keys which are stored in
memory.

I Our Contributions:
I We combine knowledge of reverse engineering of LLC slice

and DRAM addressing with timing side-channel to
determine the bank in which secret resides.

I We precisely trigger rowhammer to address in the same
bank as the secret.

I This increases probability of bit flip in the secret exponent
and the novelty of our work is that we provide series of steps
to improve the controllability of fault induction.
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Rowhammer DRAM vulnerability: a brief note

DRAM Architecture

I DRAM is hierarchically composed of Channels, Rank and Banks.
I Each bank is a two-dimensional collection of cells having typically

214 to 217 rows and a row-buffer.
I Any row in a particular bank can only be read and written by

involving the row-buffer.

The latency in DRAM ac-
cess when two access re-
quest concurrently map to
same channel, rank, bank
but different row is termed as
row-buffer conflict.
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Rowhammer DRAM vulnerability: a brief note

Rowhammer: DRAM vulnerability

I Repeated discharging and recharging of the cells of a row results
in leakage of charge in the adjacent rows.

I If repeated enough times, typically before the automatic refresh in
the adjacent rows, causes flipping of bits - phenomenon termed
as Rowhammer.

Code-hammer

{

mov (X), %eax // read adrs X

mov (Y), %ebx // read adrs Y

clflush (X) // cacheflush X

clflush (Y) // cache flush Y

jmp Code-hammer

}
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Rowhammer DRAM vulnerability: a brief note

Cache Memory Architecture
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Figure: Cache Architecture in Intel Ivy Bridge [1]

I The slice addressing in modern
processors is implemented
computing a complex Hash
function.

I Recently, reverse engineering of
the LLC slice addressing function
has been attempted [2, 3].

I The functions differ across

different architectures.
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Combining Timing Analysis and Rowhammer

Attack Model and Assumptions

The Adversary aims to:
To induce bit fault in the secret exponent of the public key
exponentiation algorithm.

The challenges involved are:
I The secret resides in some location in the cache memory

and also in some unknown location in the main memory.
I The attacker having user-level privileges in the system,

does not have the knowledge of these locations in LLC and
DRAM since these location are decided by mapping of
physical address bits.
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Combining Timing Analysis and Rowhammer

I In order to perform rowhammer on the secret exponent, the
adversary first needs to identify the corresponding bank in
DRAM in which the secret exponent resides.

I If adversary frequently queries the decryption oracle with
valid ciphertexts, decryption process will perform
exponentiation which access the secret exponent.

I But access requests are usually addressed from the cache
memory itself since they result in a cache hit.
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Combining Timing Analysis and Rowhammer

I This motivates the adversary to incorporate a spy process
I which runs concurrent to the execution of the decryption

algorithm,
I uses timing analysis,
I to identify the channel, rank and the bank where the secret

gets mapped to.
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Combining Timing Analysis and Rowhammer Determining the Eviction Set

Identifying the Eviction sets

I The adversary is oblivious of the virtual address space
used by the decryption engine and thus involves a spy
process which uses Prime + Probe cache access
methodology to identify the target sets.

I The spy process targets the Last Level cache (LLC) since it
is shared within all cores of the system.

1 Spy initially allocates a set of data elements and consults its
own pagemap to obtain the corresponding physical
addresses for each element.

2 The kernel allows userspace programs to access their own
pagemap (/proc/self/pagemap) for all Linux kernels
before version 4.0.
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Combining Timing Analysis and Rowhammer Determining the Eviction Set

Cache Set collision with secret

3. Computes the set,slice addressing
from its physical addresses.

5. Sends a selected input to 
the Decryption Engine

6. Decryption runs with input 
from the requesting process

7. Receives decrypted message 
from Decryption Engine

8. Spy accesses the seleced elements again
and measures their access times.

Decryption Engine Adversary Spy

1. Initiates the spy process.

2. Generates a memory map.

b. Primes LLC, by accessing selected elements.

    

Time

4. For the target set t,
a. Select m elements in distinct cachelines
which maps to set t for k slices.

Figure: Steps to Determine Cache sets shared by Secret Exponent
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Combining Timing Analysis and Rowhammer Determining the Eviction Set

Spy at work

If the target system is having k processor cores then LLC has k
slices, each slice having c cache sets and each set being m way
associative.

I If the cache line size is of b bytes, then least significant log2(b)
bits of physical addresses are used as index within the cache line.

I log2(k) bits determine the cache set number.
I Because of associativity, m such cache lines having identical

log2(k) bits reside in the same set.
I Hash function reverse engineered in [2, 3], is used to compute

the slice in which a cache set gets mapped.
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Combining Timing Analysis and Rowhammer Determining the Eviction Set

Selecting elements belonging to Eviction set

To precisely control the eviction of existing cache lines from set
t, spy runs a selection algorithm to select an eviction set of m ∗ k
elements belonging to each set t.

I Thus the selection algorithm selects elements of distinct cache
lines for each of the k cache slices such that physical addresses
maps to the same set t.

I In addition, each set of a slice is m way associative, the selection
algorithm selects m elements corresponding to each k cache
slice belonging to set t.

I The spy accesses each of these m ∗ k selected memory
elements repeatedly to ensure that the cache replacement policy
has evicted the existing cache lines.
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Combining Timing Analysis and Rowhammer Determining the Eviction Set

Prime + Probe

1 The spy primes the target Set t and becomes idle.
2 The adversary sends the chosen ciphertext for decryption and

waits till the decryption engine sends back the message.
3 If cache sets used by the decryption is same as spy, then the

cache lines primed by the spy process gets evicted during the
decryption.

4 Adversary signals the spy to start probing and timing
measurements are noted.

5 Spy process accesses each of the selected m elements of
eviction set t for all slices and time to access each of these
elements are observed.

6 When the spy again accesses the same elements, if it takes
longer time to access then we conclude that the cache set has
been accessed by the decryption as well.
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Combining Timing Analysis and Rowhammer Determining the LLC Slice where the Secret Maps

Identifying the target LLC slice

I Adversary identifies the target LLC slice by iteratively
running Prime + Probe protocol separately for each k slices
with the selected m elements for that particular slice.

I The timing observations while probing will show significant
variation for a set of m elements which corresponds to the
same slice where the secret maps.

I Thus we further refine the size of eviction set from m ∗ k to
m elements.
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Combining Timing Analysis and Rowhammer Determining the DRAM Bank that the Secret Maps

Identifying the Target DRAM bank

I Concurrent accesses to different rows in the same DRAM
bank results in row-buffer conflict and automatically leads to
higher access time.

I The functions which decide the channel, rank and bank
mapping from the physical addresses are not disclosed by
the architecture manufacturers.

I Some recent works attempted the reverse engineering of
these unknown mappings.
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Combining Timing Analysis and Rowhammer Determining the DRAM Bank that the Secret Maps

DRAM bank collision with secret

3. Computes the set,slice addressing
from its physical addresses.

Decryption Engine Adversary Spy

1. Initiates the spy process.

2. Generates a memory map.

    

Time

4. Computes the Channel, Rank, Bank 
indices from physical addresses

8. Sends a selected input to 

the Decryption Engine

7. Primes LLC, by accessing elements in C.

from Decryption Engine

10. Receives decrypted message 

9. Decryption runs with input 

from the requesting process

10. Flush the accessed element from cache

9. Access randomly selected data which maps to

5. Fill Set C with elements mapping to
same LLC set and slice as the secret
6. For each bank b in DRAM,

target bank b and time the access.

using clf lush.

Figure: Steps to determine the DRAM bank in which secret maps to
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Experimental Validation for Inducing Bit Flips on Secret

Experimental Setup

1 We target an 1024 bit RSA implementation using square and
multiply as the underlying exponentiation algorithm using
GNU-MP big integer library (version number 2:5.0.2+dfsg-2).

2 The experiments are performed on Intel Core i5-3470 processor
of Intel Ivy Bridge micro-architecture running Ubuntu 12.04 LTS
with the kernel version of 3.2.0-79-generic.

3 The Linux kernel version for our experimental setup being older
than version 4.0, we did not require administrator privileges to
perform the entire attack.
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Experimental Validation for Inducing Bit Flips on Secret

Determining cache set and slice

I The experiments being performed on RSA, the 1024 bit exponent
resides in 2 cache lines each of 64 bytes.

I 11 bits of physical address from b6, b7, · · · b16 refer to the Last
Level cache set.

I The functions used for slice selection are:
h0 = b17 ⊕ b18 ⊕ b20 ⊕ b22 ⊕ b24 ⊕ b25 ⊕ b26 ⊕ b27 ⊕ b28 ⊕ b30 ⊕ b32
h1 = b18 ⊕ b19 ⊕ b21 ⊕ b23 ⊕ b25 ⊕ b27 ⊕ b29 ⊕ b30 ⊕ b31 ⊕ b32

I The host machine having 4 LLC slice for 4 cores selects the
eviction set of 12 ∗ 4 = 48 data elements in distinct cache lines
mapped to same set and all 4 slices.
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Experimental Validation for Inducing Bit Flips on Secret

Identifying the Cache Set
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Figure: Timing Observations for Cache set collision

I The sets are chosen such that one of them is having a
collision with the secret exponent and the other set does
not have any collision.

I The average access time of the these two sets during the
probe phase differs by approximately 80 clock cycles.
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Experimental Validation for Inducing Bit Flips on Secret

Identifying the LLC Slice
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(a) Timing Observations during Probe
phase when secret maps to slice 0

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 0  10  20  30  40  50  60  70  80

C
a

c
h

e
 a

c
c
e

s
s
 t

im
e

Iterations

Slice 0

Slice 2

(b) Timing Observations during Probe
phase when secret maps to slice 2

Figure: Timing Observations for LLC slice collision

I In Fig.(a), the secret is mapped to LLC slice 0, while in
Fig.(b), the secret gets mapped to LLC slice 2.

I In both figures, access time for the cache slice where secret
access collides is observed higher than the other slice
belonging to same set but no cache collision.
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Experimental Validation for Inducing Bit Flips on Secret

Alternative Strategy determining target Set and slice
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(a) Timing Observation of Cache set
Collision from optimal eviction set
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Figure: Timing Observations for LLC set and slice collision

I In Fig.(a), timing observations obtained using optimal eviction set as described in [4].
I Fig.(b) uses the slice selection functions for a 4-core processor where the functions [3] are:

o0 = b6⊕b10⊕b12⊕b14⊕b16⊕b17⊕b18⊕b20⊕b22⊕b24⊕b25⊕b26⊕b27⊕b28⊕b30⊕b32⊕b33

o1 =

b07⊕b11⊕b13⊕b15⊕b17⊕b19⊕b20⊕b21⊕b22⊕b23⊕b24⊕b26⊕b28⊕b29⊕b31⊕b33⊕b34
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Experimental Validation for Inducing Bit Flips on Secret

Identifying the DRAM Bank
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(a) Timing Observations in clock cycles
for DRAM bank collision
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(b) Timing Observations in clock cycles
of separate DRAM bank access

Figure: Timing Observations for Row-buffer collision during DRAM bank accesses

In our experimental setup, there exists 2 channel, 1 DIMM per channel, 2 ranks per DIMM, 8 banks per rank and 214

rows per bank.
I The DRAM bank equations for Ivy Bridge [5] is decided by the physical address bits: ba0 = b14 ⊕ b18,

ba1 = b15 ⊕ b19, ba2 = b17 ⊕ b21,
I Rank is decided by r = b16 ⊕ b20 and the
I Channel is decided by, C = b7 ⊕ b8 ⊕ b9 ⊕ b12 ⊕ b13 ⊕ b18 ⊕ b19.
I The DRAM row index is decided by physical address bits b18, · · · , b31.
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Experimental Validation for Inducing Bit Flips on Secret

Inducing Bit Flip using Rowhammer
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Figure: Number of bit flips observed in all banks of a single DIMM

I The secret exponent can sit in any of the rows in the target bank.
I We restricted our hammering attempts in the target bank.
I The fault attack in [6] requires a single faulty signature to retrieve the secret.
I Bit flip introduced in the secret exponent by the rowhammer in a specific bank can successfully reveal the

secret by applying fault analysis techniques in [6].
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Experimental Validation for Inducing Bit Flips on Secret

Countermeasures

1 Probabilistic Adjacent Row Activation (PARA) [7]
2 Targeted Row Refresh (TRR) [8]
3 ANVIL [9]
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Experimental Validation for Inducing Bit Flips on Secret

Limitations and practicality of the attack

I We assume that the secret decryption exponent resides in
a particular location of the DRAM and is not page-swapped
by other running processes.

I Access to pagemap is assumed to be available at user
privilege level since our setup has 3.2.0-79-generic version
of Linux kernel.

I The attack would still be relevant in a cross-VM
environment as in [10], where the users of the co-located
VMs actually have the administrator privilege.

I The attack in its original form might be relevant in
customized embedded system applications.
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Summary

Summary

I We illustrate a combination of timing and fault analysis attack
exploiting Rowhammer to induce bit flip in the secret.

I Experiments involving timing analysis shows significant variation
and leads to the identification of LLC set and slices.

I Row-buffer collision has been exploited to identify the DRAM bank
which holds the secret.

I Proposed attack finds most relevance in cross-VM setup, where
co-located VMs share the same underlying hardware and thus
root privileges are usually granted to the attack instance.
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Summary

Thank You
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